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1. Introduction

Heavy ion collision experiments at the Relativistic Heavy Ion Collider (RHIC) are believed

to probe properties of a deconfined state of hadronic matter, the Quark Gluon Plasma

(QGP) [1 – 4]. The phenomena of jet-quenching and jet-splitting observed at RHIC are

challenging to understand theoretically. A review of theoretical treatments of jet-quenching

can be found, for example, in [5]. Theoretical works on jet-splitting include [6 – 11]. Clearly

it is desirable to study similar phenomena in strongly coupled N = 4 super-Yang-Mills

theory (SYM), where substantial progress can be made via AdS/CFT starting from calcu-

lations in supergravity. While direct comparisons between SYM and QCD are fraught with

uncertainties, such calculations at least provide an independent perspective on dissipative

effects arising from a quark propagating through a strongly coupled thermal medium. In

this paper the moving quark is infinitely massive, pointlike, and fundamentally charged.

A heavy quark moving at constant velocity in an infinite, static, thermal bath of

N = 4 super-Yang-Mills theory can be described in the dual gravity picture by a string

whose endpoint is on the boundary of the AdS5-Schwarzschild spacetime. This string is

responsible for the drag force on the quark [12, 13] (see also the closely related work [14], as

well as other work [15] on jet-quenching in AdS/CFT). The configuration mentioned has a

steady-state approximation built in: the trailing string is moving at the same velocity v as

the quark. Our convention is to take this velocity to be in the x1 direction: ~v = (v, 0, 0).

We employ mostly plus metric, so that x1 = x1 but x0 = −x0 = t.

The string perturbs the geometry of AdS5-Schwarzschild in a manner explained in [16].

From the asymptotics of those metric perturbations one may extract the expectation value

of the gauge theory stress-energy tensor. In [16] the Fourier coefficients of this stress-energy
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tensor have been evaluated. It is clearly desirable to pass to a position space description:

this is a necessary step before hadronization can be considered, and it also helps one’s

intuitions about the dissipative mechanisms involved. The main result of this paper is

the computation of the energy density at a fixed time as a function of position ~x. More

precisely, we compute a dimensionless quantity

E( ~X) =

√
1 − v2

(πT )4
√

g2
Y MN

(

〈T00(0, ~x)〉 − 3π2

8
N2T 4

)

. (1.1)

Here 〈T00(0, ~x)〉 is the thermal expectation value of the total energy density in the gauge

theory at time t = 0. For convenience, an overall factor of
√

1 − v2 has been brought

out explicitly in (1.1). We always use spacetime coordinates such that the plasma is at

rest. The second term inside the parentheses in (1.1) is the contribution to 〈T00〉 from the

thermal bath. We will generally work with dimensionless position space and Fourier space

variables:
~X = πT~x, ~K = ~k/πT . (1.2)

With the Fourier coefficients E( ~K) in hand, the problem we face is simply to compute

a three-dimensional Fourier transform:

E( ~X) ≡
∫

d3K

(2π)3
ei ~K· ~XE( ~K) . (1.3)

A difficulty in carrying out this Fourier transform is that E( ~K) grows linearly with ~K and

is also singular at small ~K. Our strategy will be to find asymptotic expressions with known

analytic Fourier transforms at large and small wave-numbers, subtract them away, and pass

the remainder through a fast Fourier transform (FFT). The simplest of these expressions

is the Coulombic near-field of the quark, which is proportional to 1/x4 in the rest frame of

the quark and takes the form

ECoulomb( ~X) =
(1 − v2)5/2

[

X2
1 + (1 + v2)X2

⊥

]

12π2
[

X2
1 + (1 − v2)X2

⊥

]3 (1.4)

in the rest frame of the plasma. Here X⊥ =
√

X2
2 + X2

3 . Finite-temperature corrections to

(1.4) which are still singular at X = 0 were found in [17 – 19] and are developed further in

this work. These corrections may be interesting in their own right, because they provide

some gauge-invariant information about the energy loss mechanisms close to the quark.

They might be used to seed hydrodynamical simulations.

In presenting our results we will usually consider the quantity

E( ~X) ≡ E( ~X) − ECoulomb( ~X) (1.5)

=

(

total
energy density

of system
−

energy density
of plasma

in equilibrium

)

−
energy density

of moving quark
in vacuum

.
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Up to an overall prefactor (see (1.1)), E( ~X) is the total energy density of the moving quark

and the thermal bath, minus the energy density of the thermal bath in the absence of the

moving quark, minus the energy density of the moving quark in the absence of the thermal

bath, all at a fixed time. We will refer to E( ~X) somewhat loosely as the net energy density.

It may be positive or negative.

The reader wishing to skip over technical details can find a summary of our results in

section 2.3. Briefly, we find good agreement both with the analytical estimates [17 – 19] at

small length scales, and with linearized hydrodynamics at large length scales.

During the late stages of this project, we learned of a similar study of the energy

density which has some overlap with this work [20].

2. Real space calculation of the energy density

In earlier work [16, 18], the relation between the thermal expectation value of the stress-

energy tensor Tµν and the metric fluctuations due to the trailing string has been worked

out in detail. Here we present a brief summary. Let us write the spacetime metric as

ds2 = Gµνdxµdxν , with Gµν = G
(0)
µν + hµν , where G

(0)
µν is the AdS5-Schwarzschild metric

ds2
(0) = G(0)

µν dxµdxν =
L2

z2

[

−g(z)dt2 +
∑

i

dx2
i + g(z)−1dz2

]

g(z) = 1 − z4

z4
0

, (2.1)

and hµν is the first order correction to it in response to the trailing string. The temperature

T of the field theory is related to the location z0 of the black hole horizon through z0 =

1/πT . The stress-energy tensor of the boundary theory is proportional to the fourth order

coefficient in the expansion of the metric fluctuations hµν(z) at small z. The stress-energy

tensor is traceless, as expected for a conformal theory, but it is not conserved. The non-

conservation simply means that energy, as well as momentum in the direction of the quark’s

motion, are deposited into the thermal plasma at a constant rate [16]. This rate reproduces

the drag force as computed in [12, 13].

In order to obtain the stress-energy tensor explicitly, one has to solve the linearized

Einstein equations for the metric fluctuations hµν sourced by the trailing string. These

equations take the form

Dµνρσhρσ = Jµν , (2.2)

where Dµνρσ is a second order differential operator (a Lichnerowicz operator) and Jµν is

the source term generated by the string. These equations can be reduced to five decoupled

second order differential equations written in terms of gauge-invariant quantities called

“master fields” [18]. Because of parity considerations, two of these equations have no

source terms. The two corresponding master fields can be set to zero, and so they don’t

contribute to hµν . The remaining three master equations can be written in the form

[

z3∂zz
−3g∂z − 1 + v2k2

1

(

g−1 − 1
)

+ k̃2VX(zk̃)
]

k̃−2ΦX(zk̃) = JX(zk̃) , (2.3)
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with X = S, V , and T corresponding to “scalar,” “vector,” and “tensor” perturbations, re-

spectively (all with even parity). Also, (k1, k2, k3) are the variables conjugate to (x1, x2, x3)

(recall that our metric signature is mostly plus), and k̃2 = k2 − v2k2
1 . In what follows we

shall find it convenient to switch to the dimensionless variables ~K = z0
~k and ~X = ~x/z0,

as defined in (1.2). We will also use a convenient rescaling of the “depth” coordinate in

AdS5, namely Z = zk̃.

The quantity E( ~K) appearing in (1.3) can be obtained from a small Z expansion of

the scalar master field ΦS :

ΦS = . . . − K̃−2
(

−12πE( ~K)vK1 + i6v2
)

Z2 + . . . , (2.4)

where K̃ =
√

K2
1 (1 − v2) + K2

⊥ and K⊥ =
√

K2
2 + K2

3 (see [18] for details.)

The small K asymptotics of E( ~K) may be obtained by expanding ΦS in power series

in K, ΦS =
∑

Knψn, and solving the corresponding equation in (2.3) perturbatively in

small K [16, 18] (see equation (2.12) below.) The large K asymptotics can be obtained

in a similar manner as a power series in 1/K, which may also be regarded as a series

in positive powers of T . This series was calculated up to order O(K−1) in [19, 18]. In

appendix A we rederive these results and extend them to order O(K−3). The values of

E( ~K) for intermediate values of K have to be evaluated numerically. We do this using the

method developed in [16].

With small K and large K asymptotics in hand, we consider a decomposition

E( ~K) = EUV( ~K, µUV) + EIR( ~K, µIR) + Eres( ~K, µUV, µIR) . (2.5)

Here EUV( ~K, µUV) agrees with the large K asymptotics up to and including terms of order

K−3, EIR( ~K, µIR) agrees with the small K asymptotics up to and including terms of order

K0, and Eres( ~K, µUV, µIR) is uniformly bounded and integrable. The parameters µUV and

µIR are pure numbers which can be adjusted to make the residual part Eres( ~K) as small as

possible. The precise analytic forms of EUV( ~K, µUV) and EIR( ~K, µIR) will be explained in

sections 2.1 and 2.2, respectively.

Ideally, EUV( ~K, µUV) and EIR( ~K, µIR) should admit analytic Fourier transforms. We

didn’t quite realize this goal: the Fourier transform of EIR( ~K, µIR) is left in the form

of a one-dimensional Fourier integral which must be performed numerically. The Fourier

transform of Eres( ~K, µUV, µIR) must also be performed numerically, via a three-dimensional

fast Fourier transform. In section 2.3 we report the results of numerics for three values of

velocity: v = 0.25, v = 0.58, and v = 0.75. The second of these is only slightly larger than

the speed of sound in the thermal plasma, cs = 1/
√

3 ≈ 0.577.

2.1 Near-field asymptotics

Using methods explained in section 2 and appendix A, one finds

E( ~K) = E(0)
UV( ~K) + O(K−5) , (2.6)

– 4 –



J
H
E
P
0
9
(
2
0
0
7
)
1
0
8

where

E(0)
UV( ~K) = −K2

1v2(−1 + v2) + K̃2(2 + v2)

24K̃
− iK1v[2K2

1v2(−1 + v2) + K̃2(−5 + 11v2)]

18πK̃4

+
3K4

1v4(−1 + v2) + 7K̃4(2 + v2) + K2
1K̃2v2(−1 + 10v2)

24K̃7
, (2.7)

where, as before, K̃ =
√

K2
1 (1 − v2) + K2

⊥ and K⊥ =
√

K2
2 + K2

3 . The difference E( ~K) −
E(0)

UV( ~K) is small at large K but large at small K because of the inverse powers of K̃ that

appear in (2.7). This is bad because our eventual aim is to find an analytic approximation

to E( ~K) that is good both in the UV and the IR. The bad IR behavior of (2.7) can be

cured by using the identity

1

K̃n
=

1

(K̃2 + µ2
UV)n/2

[

1 − µ2
UV

K̃2 + µ2
UV

]−n/2

(2.8)

and expanding the quantity in square brackets to just enough terms to keep the O(K−5)

accuracy that E(0)
UV( ~K) possesses in the first place. Through this procedure one obtains

EUV( ~K, µUV) = −
(

2 + v2
)

√

K̃2 + µ2
UV

24
+

−2K2
1 v2

(

−1 + v2
)

+
(

2 + v2
)

µ2
UV

48
√

K̃2 + µ2
UV

+ . . . ,

(2.9)

where the omitted terms are polynomials in K1, µUV, and v times negative powers of
√

K̃2 + µ2
UV. These terms are straightforward to work out, but their precise form is long

and not very enlightening.

The Fourier transform of EUV( ~K, µUV), as well as several other Fourier transforms

required in later sections, can be worked out starting from

∫

ddK

(2π)d
ei ~K· ~X

(K2 + µ2)n
=

2

(4π)d/2Γ(n)

(

X

2µ

)n−d/2

Kn−d/2(µX) (2.10)

and taking appropriate derivatives of it. Here Kν(z) is a modified Bessel function of the

second kind. For the case at hand we use (2.10) with d = 3 and K → K̃.

The Fourier transform of EUV( ~K, µUV) is

EUV( ~X, µUV) = − µ2
UV

96π2(1 − v2)
3

2 X̃4

(

µUVX̃
(

2v2X2
1 +

(

−2 + v2 + v4
)

X̃2
)

K1(µUVX̃)

+ 4
(

2v2X2
1 +

(

−1 + v4
)

X̃2
)

K2(µUVX̃)
)

+ . . . , (2.11)

where we have defined X̃ =
√

X2
1/(1 − v2) + X2

⊥. The terms written explicitly in (2.11)

correspond to those appearing explicitly in (2.9). Additional terms have similar forms, and

it would not be very illuminating to write them out explicitly here.
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2.2 Far-field asymptotics

As described at the beginning of this section, the IR asymptotics of the energy density may

be obtained by solving equation (2.3) perturbatively in small K. One obtains

E( ~K) = − 3iK1v
(

v2 + 1
)

2π(K2
1 (1 − 3v2) + K2

⊥)
+

3K2
1v2

(

K2
⊥(2 + v2) + 2K2

1 (1 + v2)
)

2π(K2
1 (1 − 3v2) + K2

⊥)
2 + O(K) . (2.12)

A problem with (2.12) is that the Fourier transform of negative powers of K2
1 (1−3v2)+K2

⊥

is not well defined when v2 > 1/3 due to the poles which appear on the real axis. As

suggested in [16], the quantity

E(resummed)
IR ( ~K) =

A(K1)

K2
⊥ + m(K1)

2 (2.13)

with

A(K1) = −3ivK1(1 + iK1v + v2)

2π (1 − iK1v)

m(K1)
2 = K2

1 − 3K2
1v2

1 − iK1v
(2.14)

is a more uniform approximation to E( ~K) for small ~K than the terms shown explicitly

in (2.12). The expressions (2.12) and (2.13) agree up to O(K) corrections, but the denomi-

nator of (2.13) shifts the poles away from the real axis. We describe this modification of the

denominator as a “resummation” of the series (2.12) because a single rational expression,

(2.13), includes both terms in (2.12).1

The problem now is that an analytic Fourier transform of E(resummed)
IR ( ~K) to real space

is unavailable (as far as we know) because of the cubic terms in the denominator. However,

the integration over ~K⊥ = (K2,K3) may be done analytically using (2.10) with d = 2 and

n = 1. The result is

E(resummed)
IR ( ~X) =

∫

d3K

(2π)3
ei ~K· ~X A(K1)

K2
⊥ + m(K1)

2 =

∫ ∞

−∞

dK1

2π
eiK1X1

A(K1)

2π
K0(m(K1)X⊥)

(2.15)

where m(K1) =

√

m(K1)
2 is chosen so that Re{m(K1)} > 0. The last integral in (2.15)

does not seem to be expressible in closed form. However, for X⊥ > 0, the integrand has

exponential decay for large |K1|, and it is continuous. So it can be handled reliably with

numerical methods, i.e. a one-dimensional FFT.

The large K behavior of E(resummed)
IR ( ~K) is O(1/K2), so it brings back problems with

the UV region that EUV( ~K, µUV) was supposed to have fixed. Let us therefore consider the

1As will be discussed in section 3, this resummation can be motivated physically in terms of passing
from inviscid to viscous hydrodynamics.
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following corrected form:

EIR( ~K, µIR) =
A(K1)

K2
⊥ + m(K1)2

− A(K1)

K2
⊥ + m(K1)2 +

µ2

IR

1−iK1v

. (2.16)

The Fourier transform of the second term in (2.16) is similar to (2.15).

2.3 Numerical results

We obtained E( ~K) numerically using minor improvements over the code used for [16]. We

chose µUV = µIR = 1. A three-dimensional FFT of Eres = E−EUV−EIR was performed on a

grid with 128 points on each side and with each component Ki running approximately from

−10 to 10. One-dimensional FFT’s of EIR were carried out on grids with approximately

3000 points, with K1 again running approximately from −10 to 10. Edge effects can be

expected in position space near the boundary of an FFT. To smooth them out we multiplied

the position space results of FFT’s by a C1 approximation of the top-hat function, i.e. a

function which is 0 outside a large cube, 1 inside a smaller cube, and has one continuous

derivative everywhere.

In figure 1 we plot the net energy density E ≡ E − ECoulomb as a function of X1 at

various velocities and various values of X⊥.

To get a feel for the scales involved, note that if T = 1
π GeV ≈ 318MeV, then X = 1

corresponds to a distance 1GeV−1 ≈ 0.2 fm from the quark.

For supersonic velocities, one can compare the structure associated with a Mach cone

to the scale of hydrodynamical broadening, ∆x =
√

Γst. Here Γs is the diffusion length for

sound waves. We plug in t = x⊥

cs
csc θM , where θM = arccos cs

v is the Mach angle, because

this is the time it takes for sound to travel from the quark to a point on the Mach cone a

transverse distance x⊥ from the axis of the quark’s motion: see figure 2.

The sound waves propagate at the Mach angle, whereas our plots in figure 1 are along

the X1 direction. Thus the expected broadening in x1 is

∆x1 = ∆x sec θM =

√

Γs
X⊥

cs
csc θM sec θM . (2.17)

Using cs = 1/
√

3, Γs = 1/3πT , and X1 = πTx1, one finds

∆X1 = πT∆x1 =

√

3v3X⊥
4
√

3v2 − 1
. (2.18)

Figures 3, 4, and 5 show contour plots of the net energy density E ≡ E − ECoulomb

for various values of the quark velocity. The structures exhibited in E ≡ E − ECoulomb are

notably scale-dependent. Observe for example from figure 3 that at v = 0.25, E > 0 for

small negative and large positive X1 and E < 0 for small positive and large negative X1.

Recall that if T = 1
π GeV ≈ 318MeV, then X = 1 corresponds to a distance 1GeV−1 ≈

0.2 fm from the quark.
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Figure 1: (Color online.) E ≡ E − ECoulomb as a function of dimensionless position X1 for various
values of offset Xp = X⊥ from the quark and velocity v of the quark. In each plot, the black curve
is E. The red curve is EIR. The green curve is Eres with C1 smoothing (see the main text). The
blue curve is EUV − ECoulomb. The dotted purple curve is from inviscid linearized hydrodynamics
(see the discussion in section 3). The green dot corresponds to the Mach angle. The blue dots show
a width typical of hydrodynamical broadening (see the main text). The red dots show the points
where the smoothing of Eres starts. The quark is at X1 = X⊥ = 0.

quark at
time 0

quark at
time −t

xp

v

∆

vt

Mach

θ

cone

M

1x

1xsΓ t

c ts

Figure 2: (Color online.) An estimate of hydrodynamical broadening of the Mach cone. The
gray line, offset by a distance xp = x⊥ from the quark’s trajectory, is the axis along which we plot
E ≡ E − ECoulomb in figure 1. The green dot in that figure is at the intersection of the gray and
green lines in this one; likewise the blue dots are at intersections of the gray line with the blue lines.
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Figure 3: (Color online.) Contour plots of E ≡ E−ECoulomb as a function of dimensionless position
coordinates X1 and Xp = X⊥, for v = 0.25. Note that the top plot shows the smallest structures
while the bottom plot shows the largest. Orange and red regions correspond to E > 0; white regions
correspond to E ≈ 0; and blue regions correspond to E < 0. The energy density of the thermal
bath is not included in E. The three-dimensional energy density profile is axially symmetric around
the X1 axis. The black dot is the position of the quark: X1 = X⊥ = 0.

Note that the double-peaked feature in the upper right plot in figure 1 corresponds to

the structure near the origin of the top plot in figure 5. As observed in [18, 19], in three

dimensions this structure is a forward lobe and a backward-leaning cone of energy over-

density (as usual, relative to the sum of the energy density of the moving quark and the

thermal bath in the absence of interaction between the two), with regions of under-density

in complementary regions.

In the large scale plots one sees that the net energy density falls quickly to zero for

positive X1 when v > 1/
√

3. We suspect that E (not E) falls exponentially in this direction.

For negative X1 and fixed X⊥, E decays as 1/X2
1 (see equation (3.5)).
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Figure 4: (Color online.) Contour plots of E ≡ E−ECoulomb as a function of dimensionless position
coordinates X1 and Xp = X⊥, for v = 0.58. Note that the top plot shows the smallest structures
while the bottom plot shows the largest. Orange and red regions correspond to E > 0; white regions
correspond to E ≈ 0; and blue regions correspond to E < 0. The energy density of the thermal
bath is not included in E. The three-dimensional energy density profile is axially symmetric around
the X1 axis. The black dot is the position of the quark: X1 = X⊥ = 0. The dashed green line
shows the Mach cone.

3. Conclusions

Through a combination of analytic and numerical methods, we have calculated the position

space energy density of a quark moving through a thermal state of N = 4 plasma. More

precisely, we considered the net energy density, obtained by subtracting away the constant

contribution from the thermal bath as well as the field the quark would have generated in

the absence of the bath. This net energy density provides some gauge-invariant information
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Figure 5: (Color online.) Contour plots of E ≡ E−ECoulomb as a function of dimensionless position
coordinates X1 and Xp = X⊥, for v = 0.75. Note that the top plot shows the smallest structures
while the bottom plot shows the largest. Orange and red regions correspond to E > 0; white regions
correspond to E ≈ 0; and blue regions correspond to E < 0. The energy density of the thermal
bath is not included in E. The three-dimensional energy density profile is axially symmetric around
the X1 axis. The black dot is the position of the quark: X1 = X⊥ = 0. The dashed green line
shows the Mach cone.

about energy loss. It has interesting structure on multiple scales, from sizes ∼ 0.01 fm to

∼ 2 fm if we take T = 318MeV. By comparing asymptotic forms (analytic or semi-analytic)

to numerical results we can be reasonably confident that we have accurately characterized

these structures. The power of AdS/CFT is that all length scales can be treated at once.

The main features of our results can be understood in terms of analytic approximations.

At large distances and supersonic velocities, the Mach cone can be described by the small
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momentum asymptotics of the energy density,

E( ~K) ∼ 1

K2 − 3v2K2
1 − ivK2K1

, (3.1)

as found in [16]. (We have excluded from the denominator in (3.1) some cubic terms that

vanish on the Mach cone.) If the cubic term in (3.1) were dropped, then for v > 1/
√

3

there would be poles on the K1 axis corresponding to zeroes of K2−3v2K2
1 . An integration

prescription is required to pass these poles, and the physical one is given by the −ivK2K1

term. Carrying out this contour integral one finds a Mach cone structure in real space, as

could have been expected from linearized hydrodynamics.

The relationship of (3.1) to linearized hydrodynamics is worth understanding a bit

better. According to linearized hydrodynamics, the energy density obeys an equation of

the form
[

∂2

∂t2
− ∂2

∂~x2
(c2

s + Γs∂t)

]

ǫ = sources . (3.2)

(See for example [11].) Comparing the Fourier transform of (3.2) to the denominator of

(3.1), and recalling that all dependence of ǫ on time and x1 is in terms of x1 − vt, one

finds perfect agreement if c2
s = 1/3 and Γs = 1/3πT . In general, Γs = 4η/3sT , so this

provides an independent check of the result η/s = 1/4π [21]. Evidently, the cubic term in

the denominator of (3.1) arises from viscosity. If it is removed, corresponding to sending

η → 0, then the energy density becomes singular on the Mach cone. More explicitly: the

inviscid linearized hydrodynamics approximation to (2.13) is

E(inviscid)
IR ( ~K) = −3iv(1 + v2)

2π

K1

K2
1 (1 − 3v2) + K2

⊥ − iεK1
, (3.3)

where the infinitesimal positive quantity ε provides the correct pole passing prescription.

One easily finds

E(inviscid)
IR ( ~X) =

3v(1 + v2)

8π2

X1

(X2
1 + (1 − 3v2)X2

⊥)3/2
(3.4)

for v < 1/
√

3, and

E(inviscid)
IR ( ~X) =

3v(1 + v2)

4π2

X1

(X2
1 + (1 − 3v2)X2

⊥)3/2
θ
(

− X1 − X⊥

√

3v2 − 1
)

(3.5)

for v > 1/
√

3. The functions (3.4) and (3.5) are shown in the large scale plots in figure 1.

The result (3.5) can be supplemented by a singular distribution of positive energy right on

the Mach cone, but it is best regarded as an asymptotic form for large negative X1.

The charm of the AdS/CFT calculation is that it interpolates smoothly all the way

from (3.1) down to the Coulombic near-field of the quark, for which ǫ ∼ 1/x4 in the

quark’s rest frame. A good understanding of the structure observed at scales x ≪ 1/T can

already be obtained from considering just the analytic O(T 2) correction to the Coulombic
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field [18, 19]. In particular, the over-density of energy ahead of the quark for v = 0.25 and

v = 0.58 and the more complicated structure near the quark for v = 0.75 were predicted

by that work. These non-trivial structures illustrate the need (already well recognized) to

supplement hydrodynamics with a physical prescription of how energy is deposited near

the quark. The next order O(T 4) corrections have been calculated in appendix A.

Extensions of the analytical computations in appendix A, as well as numerical treat-

ments of other components of the stress tensor, are underway. When complete, perhaps

they will provide an interesting alternative perspective to perturbative intuitions about

energy loss mechanisms in QCD. Caution is appropriate when comparing AdS/CFT cal-

culations to QCD in this context because N = 4 SYM is conformal, and therefore equally

strongly coupled at the smallest and largest of scales.
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A. Large momentum asymptotics

The starting point for computing the large momentum asymptotics of the energy density

E( ~K) is the scalar master equation in (2.3), with the potential

VS =
12

(

2Z4
(

1 + α2
)

+ 2K4
(

1 + α2
)

+ Z2
(

−12 + K4
(

1 + α2
)2

))

(6Z2 + K4 (1 + α2))2
(A.1)

and source term

JS =
e−iK1ξ(Z)

Z (6Z2 + K4 (1 + α2))2

(

v2
(

1 + α2
)

(

− 54Z6α + 3K8α
(

1 + α2
)

− 6iZ5K2
(

2 + 11α2
)

+ 3Z4K4α
(

5 + 11α2
)

+ 3iZ3K6
(

2 + 5α2 + 3α4
)

+ Z2K4α
(

90 + K4
(

−2 + α2
) (

1 + α2
))

)

− α
(

− 162iZ5K2α3 + (9i) Z3K6α3
(

1 + α2
)

+ 3K8
(

−2 + α2
) (

1 + α2
)

− 18Z6
(

−2 + 7α2
)

+ 3Z4K4
(

2 + 7α2 + 23α4
)

(A.2)

+ Z2K4
(

−2 + α2
) (

90 + K4
(

−2 + α2
) (

1 + α2
))

)

)

,
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as constructed in [18]. Here,

ξ(Z) = − v

4i

[

log
K̃ − iZ

K̃ + iZ
+ i log

K̃ + Z

K̃ − Z

]

(A.3)

and α ≡ vK1/K̃. Equation (2.3) can be solved perturbatively at large K using methods

developed in [17, 18].2

Writing ΦS =
∑

K̃−nψn and solving the equations of motion perturbatively for each

ψn, one finds

ψ0 =
1

2
πZ2(C1 + C2)(L0(Z) − I0(Z)) + C2Z , (A.4)

where I0 is a modified Bessel function of the first kind, L0 is a modified Struve function,

and C1,2 are given by

C1 =
α

(

−2 + α2
) (

2 − α2 + v2
(

1 + α2
))

1 + α2
C2 =

3α
(

2 − α2 + v2
(

1 + α2
))

1 + α2
. (A.5)

At the next order one has

ψ2 = C3Z
2 + C4Z

4 , (A.6)

with

C4 = −1

3
iC1α C3 = −2

3
i

(

−5α2 − 2α4 + v2
(

1 + α2
) (

9 + 2α2
))

. (A.7)

ψ4 can be found using the Green’s functions method. Consider

−ψ4 = Z2K0(Z)

∫ Z

0
dxx−1I0(x)J(x) + Z2I0(Z)

∫ K

Z
dxx−1K0(x)J(x) , (A.8)

where now
J(x) = −2π(C1 + C2)Z

5A1(Z) + A0(Z)
∑

i

δiZ
i +

∑

i

ǫiZ
i

(A.9)

and

δ2 =
12 (C1 + C2) π

1 + α2
(A.10)

δ4 = 4 (C1 + C2) π (A.11)

δ6 =
(C1 + C2) π

(

−1 + α4
)

2 (1 + α2)
(A.12)

ǫ1 =
6

(

−4C2

(

1 + α2
)

+ 9α
(

2 − α2 + v2
(

1 + α2
)))

(1 + α2)2
(A.13)

2In [17] the large momentum asymptotics were computed to order O(T 2) using the WKB method which
required a piecewise approximation to the Schrödinger potential. This approximation breaks down at order
O(T 4) so instead we use an iterative scheme developed in [18] for extracting the corresponding correction.
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ǫ3 =
−6

(

2C2

(

1 + α2
)2 − α

(

8 − 11α2 − 10α4 + v2
(

7 + 11α2 + 4α4
))

)

(1 + α2)2
(A.14)

ǫ5 =
α

(

60 − 8α2 + 7α4 + v2
(

18 + 11α2 − 7α4
))

6 (1 + α2)
(A.15)

ǫ7 =
−

(

α3
(

−2 + α2
) (

2 − α2 + v2
(

1 + α2
)))

18 (1 + α2)
. (A.16)

Since for small values of their arguments J ∼ x1, I0 = 1+O
(

Z2
)

and K0 ∼ 1+ln Z +

O
(

Z2
)

, one has

−
(−12πEα

K̃
+ i

6v2

K̃2

)

=

(

−1

2
π(C1 + C2) + C3 −

1

K̃4

∫ ∞

0
dxx−1K0(x)J(x)

)

+ O(K̃−5)

(A.17)

where the upper limit of the second integral in (A.8) has been taken to infinity.

Carrying out the integral, one finds

− πE =
πK̃

(

2 − α2 + v2
(

1 + α2
))

24
+ i

α
(

−5 − 2α2 + v2
(

11 + 2α2
))

18K̃

− π
(

7 + 3α2
) (

2 − α2 + v2
(

1 + α2
))

24 K̃3
+ O(K̃−5) . (A.18)

B. Numerical Fourier transforms

In this appendix we describe our conventions for numerical Fourier transforms and how they

relate to the underlying code, namely Mathematica’s implementation of the FFT. Although

the contents of this section are entirely elementary, we found it a useful reference. Using

the default settings, Mathematica’s FFT code transforms a list ur of complex numbers

with 1 ≤ r ≤ N into another list vs according to

vs =
1√
N

N
∑

r=1

ure
2πi(r−1)(s−1)/N . (B.1)

(We discuss here only the case of a one-dimensional FFT; higher-dimensional cases follow

in the expected fashion.) Consider now a real function

f(x) =

∫ ∞

−∞

dk

2π
eikxf̂(k) (B.2)

which is peaked at x = x0 and decreases to 0 on a length scale ∆x. The Fourier transform

f̂(k) satisfies f̂(−k) = f̂(k)∗, and for smooth f(x), it decreases to 0 roughly on a scale

∆k = 1/∆x. Taking this as a defining relation for ∆k, let us further define

δk =

√

2π

N
∆k δx =

√

2π

N
∆x . (B.3)
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Using the following relations between r, s and k, x (with N assumed to be even):

k =















(

r − 1

2

)

δk for 1 ≤ r ≤ N/2

(

−N + r − 1

2

)

δk for N/2 < r ≤ N

x − x0 =















(

s − 1

2

)

δx for 1 ≤ s ≤ N/2

(

−N + s − 1

2

)

δx for N/2 < s ≤ N

(B.4)

and the following values for ur and vs:

ur = f̂(k)eikx0+ i

2
kδx− i

4
δkδx vs = δx

√
NfN (x)e−

i

2
δk(x−x0) , (B.5)

one can show starting from (B.1) that fN (x) → f(x) as N → ∞. It’s useful to define

klow = −khigh =
N − 1

2
δk = (N − 1)

√

π

2N
∆k

xlow = x0 −
N − 1

2
δx = x0 − (N − 1)

√

π

2N
∆x

xhigh = x0 +
N − 1

2
δx = x0 + (N − 1)

√

π

2N
∆x (B.6)

because then the evaluations of f̂(k) occur at N points, spaced by δk, the first of which is

klow and the last of which is khigh; and likewise fN (x) is defined at N points spaced by δx,

the first of which is xlow and the last of which is xhigh.
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